FPGA Firmware Development

VHDL / Vivado / FINS / Jinja / Python / Octave

Adam

Projects

- PSD band suppressor
- FINS register verification
- Window function
- FINS schema verification
- LFSR
- Curve fit
- Divider

PSD Band Suppressor

FINS Register Verification

- Created Jinja template for FINS
- Testbench module to write and read from registers
- Integrated into the PSD

Window Function

- Blackman window
- Generic parameter for window source
 - ROM
 - Dual port RAM
- ROM generated from an octave script with blackman window coefficients
- DPR can be accessed using software config bus

Window Function

LFSR

Linear Feedback Shift Register

- Next state is a linear function of the current state
- Two types: Galois and Fibonacci
- Certain taps result in a maximal length sequence

Set the size of the shift register with LFSR_WIDTH. In this example LFSR_WIDTH = 8.

Galois LFSR

Name	Value	0 us	5 us	10 us	15 us	20 us	25 us	30 us	35 us	40 us	45 us	50 us	55 us	60 us	65 us
16 clk	1														
Ъ reset	0														
16 load	0														
> 😻 seed[15:0]	cece														
16 en	1														
> 🕼 dout[15:0]	cece														
U CLK_PER	10000 ps							10000	ps						
U G_LFSR_WIDTH	16							16							
U G_MODE	1							1							

Curve Fit

- Takes 3 input samples from a parabolic curve
- Calculates a refined estimate of the xcoordinate of the parabola's peak

$$yL = a - b + c$$

$$yC = c$$

$$yR = a + b + c$$

$$2ax + b = 0$$

$$x_{max} = -b/2a$$

 $ax^2 + bx + c$

$$-b = (yL - yR)/2$$

$$2a = yL + yR - 2yC$$

Curve Fit

Curve Fit

• Simulation

Divider

- Pipelined
- Signed binary numbers
- Handle answers less than one

G_DATA_WIDTH = 8 G_EXT_BITS = 7 G_DOUT_WIDTH = 10

dividend dividend_positive dividend_pipe(0)

dividend_pipe(G_DATA_WIDTH + G_EXT_BITS) quotient

Divider

- Length of pipeline is data width + desired fractional bits
- Each stage writes one bit of the output data
- Works similar to long division by hand

