
Preliminary Design:
LFM Signal Generator

Alex • 05.23.2018



Overview
Goal: Generate a Chirp signal
Want to create a signal modeled by:
y = sin(s2*t2 + s1*t + s0)



Block Diagram



Step 0: Incrementing t
● Initialize two integers

○ “count” -- Gets value from ld(T)

○ “inc” -- Gets value from inc(I)

Step 1: Set Up φ(t) 
● φ(t) = s2×t2 + s2×t + s0

● Bit Lengths
○ s2×t2 requires 80 bits

○ φ(t) needs 81 bits total

○ Only take the 32 MSB after summation

φ(t)



Step 2: Perform y(t) = A * sin(φ(t)) or cos(φ(t))
● Implement using CORDIC

○ fn() select determines sin() or cos() at build

■ CORDIC does support switching after build, however

○ Use TCL script to generate CORDIC core for sin or cos

○ Latency of CORDIC is calculated in Vivado

y(t)

φ(t)



Step 3: Noise 

t

y(t)

● Generate Noise (N)
○ Use t, N1, N0, and Adam’s LFSR

● Create z(t) = y(t) + N

z(t)



Step 4: Filtering 
● Use a FIR filter to remove noise

○ Use FINS to include the FIR Filter IP

z(t)



Bit Widths

● Will need to scale after 
multiplications
○ Trying not to exceed 32-bits 

throughout the process
○ Use the FINS.json to grab scaling 

factors and decide fractional bits

● FIR Filter input width
○ Parameter in JSON file
○ Test with input width = output 

width



Test 1

Test the counter and 
sine wave generation, 
then chirp generation

Test 2

Try Chirp generation

Test 3

Add noise to the signal 
(Considering latency of 
CORDIC)

Test 4

Add the FIR filter, testing 
lowpass, highpass, and 
bandpass

Test 5

Add ability to handle 
complex signals 
(generate statement 
for parallel generator)



Model Results

Starting at t=0 Starting at t=0.5


