Preliminary Design: LFM Signal Generator

Alex • 05.23.2018

Overview

Goal: Generate a Chirp signal Want to create a signal modeled by: $y = sin(s_2*t^2 + s_1*t + s_0)$

Block Diagram

Step 0: Incrementing t

- Initialize two integers
 - "count" -- Gets value from Id(T)
 - "inc" -- Gets value from inc(I)

Step 1: Set Up φ(t)

- $\phi(t) = s_2 \times t^2 + s_2 \times t + s_0$
- Bit Lengths
 - \circ s₂×t² requires 80 bits
 - $\circ \phi(t)$ needs 81 bits total
 - Only take the 32 MSB after summation

Step 2: Perform $y(t) = A * sin(\phi(t)) or cos(\phi(t))$

• Implement using CORDIC

- fn() select determines sin() or cos() at build
 - CORDIC does support switching after build, however
- Use TCL script to generate CORDIC core for sin or cos
- Latency of CORDIC is calculated in Vivado

Step 3: Noise

- Generate Noise (N)
 - Use t, N1, N0, and Adam's LFSR
- Create z(t) = y(t) + N

.

Step 4: Filtering

- Use a FIR filter to remove noise
 - Use FINS to include the FIR Filter IP

Bit Widths

- Will need to scale after multiplications
 - Trying not to exceed 32-bits throughout the process
 - Use the FINS.json to grab scaling factors and decide fractional bits
- FIR Filter input width
 - Parameter in JSON file
 - Test with input width = output width

Model Results

Starting at t=0

Starting at t=0.5

