
Improving BER
with Machine
Learning

by Alex

The Setup

● Binary value X = {-1, 1} sent over the

channel to get Y = X + N

● Generator HMM creates and muddles

the data

● Predictor HMM take the data in and

“guesses” what was sent

● If we aren’t sending anything (Idle) we

send “-1,1,1,1,1,1,-1”

The Goal

● Using a neural network, decrease the amount of uncertainty in the P-HMM

● Strengthen the confidence in HDLC bits while leaving the random message bits

untouched

● By decreasing bit error in HDLC, error correction codes should have an easier time

decoding the important messages

Structure

Layer Type Output Shape # of Params

Reshape (None, 1, 12) 0

LSTM (None, 32) 8320

Dense (None, 3) 99

Total
Params:

8,419

Input Structure

● LSTM Layer uses time to make decisions

● Feed the neural net a vector of 32 time-

steps

● Decision is based on the most recent bit

that came in

Performance

● Training Time: 41 seconds

● Max Accuracy: ~98%

Varying Input SNR

● Next, trained 3 Neural

Nets on different AWGN

with covariances 0.1

(Top Right), 0.5 (Bottom

Left), and 0.9 (Bottom

Right)

Varying Input SNR

Varying Input Covariance

Error Compared to HMM

Metric HMM Total NN-HMM Total NN Only HMM % NN-HMM % NN %

Total Error 581.7 546.2 1112.2 0.5817 0.5462 1.1122

HDLC Low 2.2 1.4 132 0.0022 0.0014 0.132

HDLC High 5.8 3.4 705.5 0.0058 0.0034 0.7055

Random Data 573.7 541.4 274.7 0.5737 0.5414 0.2747

Total Hardens 88750.1 88721 87645 88.7501 88.721 87.645
Missed
Hardens 7.6 4.4 813.7 0.0076 0.0044 0.8137

False Hardens 573.7 541.4 274.7 0.5737 0.5414 0.2747

Low -> High 0.2 0.2 4.9 0.0002 0.0002 0.0049

High -> Low 0.2 0.2 18.9 0.0002 0.0002 0.0189

