Improving BER with Machine Learning

by Alex

The Setup

- Binary value X = {-1, 1} sent over the channel to get Y = X + N
- Generator HMM creates and muddles the data
- Predictor HMM take the data in and "guesses" what was sent
- If we aren't sending anything (Idle) we send "-1,1,1,1,1,1,-1"

The Goal

- Using a neural network, decrease the amount of uncertainty in the P-HMM
- Strengthen the confidence in HDLC bits while leaving the random message bits untouched
- By decreasing bit error in HDLC, error correction codes should have an easier time decoding the important messages

Structure

Layer Type	Output Shape	# of Params	
Reshape	(None, 1, 12)	0	
LSTM	(None, 32)	8320	
Dense	(None, 3)	99	
Total Params:	8,419		

Input Structure

- LSTM Layer uses time to make decisions
- Feed the neural net a vector of 32 timesteps
- Decision is based on the most recent bit that came in

<u>n = 31</u>								
Y[31]	Y[30]		Y[1]	Y[0]				
n = 32								
Y[32]	Y[31]		Y[2]	Y[1]				
n = 33								
Y[33]	Y[32]		Y[2] Y[1]					

Input vectors at time n. The box shaded in yellow is the "bit in question": the bit we are making a decision about

Performance

- Training Time: 41 seconds
- Max Accuracy: ~98%

Varying Input SNR

 Next, trained 3 Neural Nets on different AWGN with covariances 0.1 (Top Right), 0.5 (Bottom Left), and 0.9 (Bottom Right)

Varying Input SNR

Varying Input Covariance

Error Compared to HMM

Error Metric

Metric	HMM Total	NN-HMM Total	NN Only	НММ %	NN-HMM %	NN %
Total Error	581.7	546.2	1112.2	0.5817	0.5462	1.1122
HDLC Low	2.2	1.4	132	0.0022	0.0014	0.132
HDLC High	5.8	3.4	705.5	0.0058	0.0034	0.7055
Random Data	573.7	541.4	274.7	0.5737	0.5414	0.2747
Total Hardens	88750.1	88721	87645	88.7501	88.721	87.645
Missed	7.0		040 7	0.0070	0.0044	0.0407
Hardens	7.6	4.4	813.7	0.0076	0.0044	0.8137
False Hardens	573.7	541.4	274.7	0.5737	0.5414	0.2747
Low -> High	0.2	0.2	4.9	0.0002	0.0002	0.0049
High -> Low	0.2	0.2	18.9	0.0002	0.0002	0.0189