
RDMA Networking
By Nathan



Networking without RDMA

Send Receive

User program

Kernel stack

Hardware

User program

Kernel stack

Hardware



Networking with RDMA

Send Receive

User program

Kernel stack

Hardware

User program

Kernel stack

Hardware



Benefits of RDMA

u Bypass kernel networking stack

u Use networking hardware directly

u Minimize data copying 

u Improve networking performance

u Note: RDMA is a technique, not 
one specific implementation…



My Project: Benchmark Program

Server
u Establish connection

u Start timer

u Send messages

u Stop timer

u Print results

Client
u Establish connection

u Start timer

u Receive messages

u Stop timer

u Print results

…implemented with 4 different technologies!



Tech 1: Linux Socket API

u Standard networking API

u General purpose tool

u Optimized and easy to use

u Does not use RDMA

u Point of comparison for the other 3 
technologies, which do use RDMA

Sample benchmark data
•100,000 messages
•64 bytes/message
•0.18 seconds, 35.3 MB/s (server)
•0.10 seconds, 67.2 MB/s (client)



Tech 2: InfiniBand IB-Verbs API

u Designed to use RoCE hardware

u Can be run using software as well 
(Soft-RoCE)

u Not particularly robust

u Couldn’t handle very many or very 
large messages

u Occasionally crashed due to race 
conditions under the hood

u Ran 10-20x slower than socket

u Moved on to VPP instead of getting 
to the bottom of this

Sample benchmark data
•1,000 messages
•64 bytes/message
•0.02 seconds, 3.20 MB/s (server)
•0.02 seconds, 3.20 MB/s (client)



Tech 3: Vector Packet Processing (VPP)

u Weird code (too many macros)

u Poor documentation

u Refused to compile



Tech 4: eXpress Data Path (XDP)

u Uses two programs

u Kernel program: intercepts 
incoming packets, sends them to 
user program’s AF_XDP socket

u User program: reads and writes 
packets using AF_XDP socket

u Ran 5-10x slower than socket

u Couldn’t enable zero-copy mode 
due to system limitations

u Nearly 90% of server runtime was 
the kernel doing packet processing

Sample benchmark data
•100,000 messages
•64 bytes/message
•1.03 seconds, 6.19 MB/s (server)
•1.01 seconds, 6.32 MB/s (client)



Results

u 1st place: Socket

u It’s not easy to beat the Linux 
developers at their own game!

u 2nd place: XDP

u Most straightforward RDMA tech

u Some clear ways to try to improve

u 3rd place: IB-Verbs

u More opaque API than XDP

u Harder to find and fix errors

u (Dis)honorable mention: VPP



Challenges

u Switching between technologies 
over the course of the summer

u Using APIs with limited 
documentation

u Debugging asynchronous and time-
sensitive code

u Trying to outperform the Linux 
kernel developers



Challenges

u Switching between technologies 
over the course of the summer

u Using APIs with limited 
documentation

u Debugging asynchronous and time-
sensitive code

u Trying to outperform the Linux 
kernel developers

u My mentor having a baby



What I learned

u Better C and Make skills

u Profiling my code (gprof)

u Reading source code

u Low-level networking



Thank you!


