RDMA Networking

By Nathan



Networking without RDMA

Send Receive

User program User program

Kernel stack Kernel stack

Hardware Hardware




Networking with RDMA

.
Send Receive

User program User program

Hardware Hardware




Benefits of RDMA

Bypass kernel networking stack
Use networking hardware directly
Minimize data copying

Improve networking performance

» Note: RDMA is a technique, not
one specific implementation...




My Project: Benchmark Program

Server

>

vV v v Vv

Establish connection
Start timer

Send messages

Stop timer

Print results

Client

>

vV v v Vv

Establish connection
Start timer

Receive messages
Stop timer

Print results

...implemented with 4 different technologies!




Tech 1: Linux Socket API

» Standard networking API
» General purpose tool
» Optimized and easy to use

» Does not use RDMA

» Point of comparison for the other 3
technologies, which do use RDMA

Sample benchmark data
» 100,000 messages

» 64 bytes/message

«(0.18 seconds, 35.3 MB/s (server)
«0.10 seconds, 67.2 MB/s (client)




Tech 2: InfiniBand IB-Verbs API

» Designed to use RoCE hardware

» Can be run using software as well
(Soft-RoCE)

» Not particularly robust

» Couldn’t handle very many or very
large messages

» Occasionally crashed due to race
conditions under the hood

» Ran 10-20x slower than socket

» Moved on to VPP instead of getting
to the bottom of this

Sample benchmark data
1,000 messages

» 64 bytes/message
«0.02 seconds, 3.20 MB/s (server)
«0.02 seconds, 3.20 MB/s (client)




Tech 3: Vector Packet Processing (VPP)

» Weird code (too many macros)
» Poor documentation

» Refused to compile




Tech 4: eXpress Data Path (XDP)

» Uses two programs

» Kernel program: intercepts
incoming packets, sends them to
user program’s AF_XDP socket

» User program: reads and writes
packets using AF_XDP socket

» Ran 5-10x slower than socket

» Couldn’t enable zero-copy mode
due to system limitations

» Nearly 90% of server runtime was
the kernel doing packet processing

Sample benchmark data
» 100,000 messages

» 64 bytes/message
»1.03 seconds, 6.19 MB/s (server)
«1.01 seconds, 6.32 MB/s (client)




Results

>

>

>

>

1st place: Socket

» It’s not easy to beat the Linux
developers at their own game!

2" place: XDP

» Most straightforward RDMA tech

» Some clear ways to try to improve
3rd place: IB-Verbs

» More opaque APl than XDP

» Harder to find and fix errors

(Dis)honorable mention: VPP




Challenges

» Switching between technologies
over the course of the summer

» Using APIs with limited
documentation

» Debugging asynchronous and time-
sensitive code

» Trying to outperform the Linux
kernel developers




Challenges

» Switching between technologies
over the course of the summer

» Using APIs with limited
documentation

» Debugging asynchronous and time-
sensitive code

» Trying to outperform the Linux
kernel developers

» My mentor having a baby




What | learned

Better C and Make skills
Profiling my code (gprof)

Reading source code

vV v v VY

Low-level networking




Thank you!




