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Benefits of RDMA

u Bypass kernel networking stack

u Use networking hardware directly

u Minimize data copying 

u Improve networking performance

u Note: RDMA is a technique, not 
one specific implementation…



My Project: Benchmark Program
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u Print results

…implemented with 4 different technologies!



Tech 1: Linux Socket API

u Standard networking API

u General purpose tool

u Optimized and easy to use

u Does not use RDMA

u Point of comparison for the other 3 
technologies, which do use RDMA

Sample benchmark data
•100,000 messages
•64 bytes/message
•0.18 seconds, 35.3 MB/s (server)
•0.10 seconds, 67.2 MB/s (client)



Tech 2: InfiniBand IB-Verbs API

u Designed to use RoCE hardware

u Can be run using software as well 
(Soft-RoCE)

u Not particularly robust

u Couldn’t handle very many or very 
large messages

u Occasionally crashed due to race 
conditions under the hood

u Ran 10-20x slower than socket

u Moved on to VPP instead of getting 
to the bottom of this

Sample benchmark data
•1,000 messages
•64 bytes/message
•0.02 seconds, 3.20 MB/s (server)
•0.02 seconds, 3.20 MB/s (client)



Tech 3: Vector Packet Processing (VPP)

u Weird code (too many macros)

u Poor documentation

u Refused to compile



Tech 4: eXpress Data Path (XDP)

u Uses two programs

u Kernel program: intercepts 
incoming packets, sends them to 
user program’s AF_XDP socket

u User program: reads and writes 
packets using AF_XDP socket

u Ran 5-10x slower than socket

u Couldn’t enable zero-copy mode 
due to system limitations

u Nearly 90% of server runtime was 
the kernel doing packet processing

Sample benchmark data
•100,000 messages
•64 bytes/message
•1.03 seconds, 6.19 MB/s (server)
•1.01 seconds, 6.32 MB/s (client)



Results

u 1st place: Socket

u It’s not easy to beat the Linux 
developers at their own game!

u 2nd place: XDP

u Most straightforward RDMA tech

u Some clear ways to try to improve

u 3rd place: IB-Verbs

u More opaque API than XDP

u Harder to find and fix errors

u (Dis)honorable mention: VPP



Challenges

u Switching between technologies 
over the course of the summer

u Using APIs with limited 
documentation

u Debugging asynchronous and time-
sensitive code

u Trying to outperform the Linux 
kernel developers
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u My mentor having a baby



What I learned

u Better C and Make skills

u Profiling my code (gprof)

u Reading source code

u Low-level networking



Thank you!


