
1

Drone 5G Integration
Jay & Jason

Drone Project
Goals
•RB5 Platform offers a mobile
platform for data collection and
deployment

• Application
• 5G Reconnaissance
• 5G Spoofing

2

Outline

3

Drone Infrastructure
• UHD Container Installation
• Provides a low risk, generic collection

system, and potential jammer deployment
• OAI Installation

• 5G reception and transmission capability
on drone

Application
• 5G Reconnaissance

• Collection from UHD allows for signal
detection and data collection

Drone
Infrastructure

UHD
CONTAINER APPLICATION

OAI INSTALLATION

4

Drone UHD Container

5

UHD Container Installation
Needed to install dependencies:
• apt-utils
• libboost-all-dev
• Cmake
• libusb-1.0-0-dev
• git python3
• python3-dev
• python3-pip
Created bash script to install UHD git repository:
• Tested locally on x86
• Needed privileged mode and a shared volume of "/dev/bus/usb:/dev/bus/usb"

• Needed the 'buildx' command to build on ARM for drone

6

Objective
Drone:

• Use drone to capture information (raw signals, metadata)

7

How:
Drone:

◦ Use UHD to capture signal
◦ Access GPS information
◦ Save UHD and GPS information

(metadata) into a file

8

Objective: Use drone to capture information (raw signals,
metadata)

Milestone 1
Major Requirements (Issues):

• Access GPS on the drone for location

• Use GPS for timing

• Use SigMF to create a metafile from
meta data

9

Access GPS on Drone
• How: Utilize the Px4 on the drone to start the GPS and check the status of the GPS information
(latitude, longitude, altitude, time in EPOCH)

10

Output Value Final Answer

time_utc_usec: 1658236383399603 Tuesday, July 19, 2022 9:13:03.399 AM [1]

lat: 391674603 39.16774603

lon: -768094451 -76.8094451

alt: 52313 52.313

GPS Status Information

11

timestamp:
time_utc_usec:
lat:
lon:
alt:
alt_ellipsoid:
s_variance_m_s:
c_variance_rad:
eph:
epv:
hdop:
vdop:
noise_per_ms:
jamming_indicator:
vel_m_s:

vel_n_m_s:
vel_e_m_s:
vel_d_m_s:
cog_rad:
timestamp_time_relative:
heading:
heading_offset:
fix_type:
jamming_state:
vel_ned_valid:
satellites_used:

Use SigMF to Create a Metafile
• How: Use SigMF to create a metafile that contains the
metadata collected from the GPS and UHD

• Obstacle: Unable to install SigMF on drone (pip issue),
created docker compose with shared volumes for the
GPS to be shared in container of UHD

• Update to Design: Created a log file that contains the
information from the UHD and GPS

• Test:

• ./Interactive_Python_GPS_UHD.py --input
rx_samples_to_udp --rate 10000000 --freq 900000000 --
gain 1 --nsamps 100000 --port 80 --addr 10.3.4.2

12

Approach:
Script

13

Issue 1,2 Issue 3

Demo
Commands to Use:

1. root@qrb5165-rb5:~/jay#: docker compose up –d

2. root@qrb5165-rb5:~/jay#: ./Interactive_Python_GPS_UHD.py --input rx_samples_to_file --
rate 10000000 --freq 900000000 --gain 1 --duration 3 --filename example

3. root@qrb5165-rb5:~/jay#: docker compose down

What to expect:

• Output log file “metafile”: ~/rx_file_output

• Datafile: ~/rx_file_output

• Overall GPS Information: /tmp

• There may be an inconsistency in altitude if so unplug and replug in drone

• More information Here

14

https://curiosity.office.geontech.com/unicorn-blue/overly-cheeky-ocelot/oai-intern/-/blob/acess-gps/Readme_Python_GPS_UHD_SigMF_script.md

OAI Installation

15

OAI Installation
•Cross-compilation necessary for OAI use on ARM-based drone

• `docker buildx` reference: Drone.md

•Verification of build on drone
• Test existence of all necessary packages using python script
• Run UE on drone and gNB on workstation and test connection
• Run gNB on drone and UE on workstation and test connection

15

https://curiosity.office.geontech.com/unicorn-blue/overly-cheeky-ocelot/oco-top/-/blob/main/docs/drone.md

OAI Installation

ran-base
Latest source files

Necessary packages and compilers to run an OAI RAN executable

Compiles target images for ARM64

ran-build Builds all target images using ‘ran-base’

Target Images (gNB & nr-UE)
Only contains generated executable, generated shared libraries,
necessary libraries and packages to run generated binaries

Goal: Install on Drone

17

Image Construction
•./base_command
• Runs `docker buildx build` to create the 'ran-base' from my edited Dockerfile

•./build_command
• Builds 'ran-build' using ran-base's installed source files & libraries
• Creates 'gNB' & 'NR-uE' images to be installed on drone

•Location

18

https://curiosity.office.geontech.com/unicorn-blue/overly-cheeky-ocelot/oai-5g/-/tree/geon-arm-ran_build

Challenges
• Required creation of script for
manual installation of necessary
libraries

• LAPACK – linear algebra package
• OpenJDK – open source

implementation of Java SE
• Lack of Development for ARM
Intrinsics in OAI

• sse_intrin.h

19

https://curiosity.office.geontech.com/unicorn-blue/overly-cheeky-ocelot/oai-5g/-/blob/geon-main/openair1/PHY/sse_intrin.h

Future Work
• sse2neon – open-source C++ header file that performs intrinsics translation from x86 to arm64
• SIMDe – open source intrinsics translation library which builds on sse2neon

• Potential future use for any Geon project that requires intrinsic translation

•Mobile 5G Reconnaissance & DoS attacks

• Link to Report
• Major issues
• Preliminary implementation of sse2neon

• Link to Journal Documenting Troubleshooting
oWeek 5 Journal Entry
oWeek 6 Journal Entry

20

https://curiosity.office.geontech.com/unicorn-blue/overly-cheeky-ocelot/oai-5g/-/tree/geon-arm-ran_build/geon
https://curiosity.office.geontech.com/jremy/journal/-/blob/main/weekly_entries/week_5.md
https://curiosity.office.geontech.com/jremy/journal/-/blob/main/weekly_entries/week_6.md

Outline

21

Drone Infrastructure
• UHD Container Installation
• Provides a low risk, generic collection

system, and potential jammer deployment
• OAI Installation

• Use of 5G reception and
transmission capability on drone

Application
• 5G Reconnaissance

• Collection from UHD allows for signal
detection and data collection

Objective
5G Reconnaissance

• Parse OAI receiver log file for cell information

22

How:
Host Platform:

◦ Continuously search for updates
to a OAI log file

◦ Parse Updated Log File for
wanted cell information

◦ Export cell information to client

23

Objective: Parse OAI receiver log file for cell information

Milestone 2

24

Major Requirements (Issues):

• Use Python Inotify to scan for updates to a log
file

• Parse the new lines and detect specific
messages

•Update detections to database or use messaging
protocol (zmq) to forward to next application
• (Export messages to client)

Issue 2

Issue 3

Issue 1

Use Python Inotify to Scan for Updates
• How: Inotify will continuously wait and check in a wanted file for modifications made
• With a given directory and filename of the wanted file given

25

Parse New Lines and Detect Specific Messages
• How: Parse the modified log file starting from the last line of the previous modification and search for
special token ($i+@ware)
• This will avoid parsing already parsed lines from the previous modifications
• Save output messages to file

• Example messages:
• MIB Spec = Frame, SCS common, Type A Pos, Cell Barred, PDCCH CORESET0, pdcch_SS0
• SIB1 FreqInfoDL.SCS_SpecificCarrierList = Offset to Carrier, Subcarrier Spacing, carrier BW
• SIB1 PLMN Info = TAC, RANAC, CellResOpUse, MNC, MCC, CellId
• SIB1 Paging Info = Paging Cycle, ns
• SIB1 ServingCellConfig Info = SSB Period, PBCH Block Power, Offset to Point A
• SIB1 TDD_UL_DL_ConfigCommon = Ref SCS, pattern1, pattern2
• PhysCellId, SCS, N_RB_DL, NRB_UL, SSB SC Offset
• Common (freq offset, eNB ID)

26

Parse New Lines and Detect Specific Messages

27

Input to terminal with Token Output Parsed Message File

Approach: Script

28

Issue 1 Issue 2

How to Use
Commands to Use:

1. jay@5g-lab-01:~/Documents$: ./Drone_Parser.py --directory /tmp --filename sit_aware --
output /home/jay/Documents

2. One terminal: Output information to the filename using output redirection

What to expect:

• directory: Where the wanted file to be parsed is found

• filename: Name of the wanted parsed file

• output: Path to where the log file that contains the messages

• Note: The wanted file must be already created before the script is ran (touch name.log) in /tmp

• More information Here

29

https://curiosity.office.geontech.com/unicorn-blue/overly-cheeky-ocelot/oai-intern/-/blob/log-parse/Readme_for_Drone_Parser_Script.md

Export
Messages to
Client – Future
Development

30

5G Reconnaissance Deployment Diagram

31

Questions?

32

